Perchè l'uso dei motori di ricerca ci dà un'illusoria sensazione di autostima cognitiva e perchè le nostre ricerche online sono fallaci e distorte? Perchè ci sono i bias!
TEORIE > CONCETTI > BIAS E EURISTICHE
Scopo di questa pagina
La ricerca di informazioni è un'attività umana fondamentale. Nel mondo moderno, è spesso condotta attraverso interazioni con i motori di ricerca. Talvolta ci chiediamo perchè facciamo così fatica a ottenere rapidamente delle buone risposte dalle nostre ricerche online. La risposta degli esperti è che non teniamo conto dei pregiudizi che albergano nella nostra mente e di quelli che gli algoritmi dei motori di ricerca portano dentro di se. L'attenzione al proprio processo di ricerca online si rivela indispensabile se si vogliono evitare gli errori che la maggior parte delle persone fa durante le ricerche online.
Esistono due tipi di pregiudizi che vanno a inficiare i risultati: pregiudizi di ricerca che sono presenti nella mente di colui che effettua la ricerca, e pregiudizi di sistema che sono presenti negli algoritmi del motore e sono stati creati da un apprendimento del motore distorto o incompleto (machine learning).
Il linguista ed esperto di ricerche Ryen White scrive nelle conclusioni del suo studio: "Le credenze delle persone e i pregiudizi inconsci che derivano da tali credenze, influenzano il loro giudizio, il processo decisionale e le loro azioni, così come evidenziato dagli psicologi. Possono essere osservati pregiudizi nel recupero di informazioni in situazioni in cui i ricercatori cercano o vengono a contatto con informazioni che si discostano significativamente dalla verità. Abbiamo descritto uno studio dettagliato dei pregiudizi in ricerche online, nel contesto di domande sì-no in ambito medico. Abbiamo dimostrato che le persone cercano di confermare le loro convinzioni con le loro ricerche e che i motori di ricerca forniscono risultati di ricerca distorti, irrispettosi della verità. [probabilmente falsati dall'errato apprendimento automatico dell'algoritmo del motore] Abbiamo anche dimostrato che le persone hanno maggiori probabilità di selezionare informazioni positive sui risultati di ricerca del motore (SERP), indipendentemente dall'ordinamento dei risultati, e probabilmente salteranno i risultati negativi per raggiungere quelli positivi. Forse la scoperta più preoccupante della nostra analisi è che la combinazione di pregiudizi di sistema e di ricerca portano le persone ad accontentarsi di risposte errate per circa la metà delle volte (e che questa inesattezza viene amplificata quando la risposta del medico, usata come verità fondamentale, è no. I risultati evidenziano un compromesso tra distorsione e precisione che i motori di ricerca devono considerare. I pregiudizi fanno parte della storia dell'umanità fin dai suoi albori ma, con l'invenzione del Web la loro diffusione è aumentata a dismisura. I bias sono presenti nei dati perchè qualcuno ce li introduce, e si tratta di piccole minoranze molto attive. Il ricercatore Ricardo Baeza-Yates chiarisce questo fenomeno: "La presenza di biases ha causato parzialità nei big data per diventare una tendenza e un argomento controverso negli ultimi anni. Le minoranze, in particolare, hanno subito gli effetti dannosi della distorsione dei dati nel perseguire obiettivi di vita, con esiti governati principalmente da algoritmi, a partire dalla concessione di mutui fino alla personalizzazione della pubblicità. Mentre gli ostacoli che essi incontrano rimangono un punto importante, il pregiudizio riguarda tutti noi, sebbene la maggior parte delle volte siamo inconsapevoli o non sappiamo come potrebbe (negativamente) influenzare il nostro giudizio e comportamento. Nell'esplorazione di un set di dati di Facebook dal 2009 con quasi 40.000 utenti attivi, abbiamo riscontrato che il 7% ha prodotto il 50% dei post. In un set di dati più grande di Amazon con recensioni dal 2013, abbiamo trovato solo il 4% di utenti attivi. In un set di dati molto grande dal 2011 con 12 milioni di utenti Twitter attivi, il risultato è stato solo del 2%. Infine, abbiamo appreso che la prima stesura della metà delle voci di Wikipedia in inglese è stato pubblicata dallo 0,04% dei suoi editor registrati o, approssimativamente, da 2.000 persone, indicando che solo una piccola percentuale di tutti gli utenti contribuisce al Web e che l'idea che il Web rappresenti la saggezza della folla è un'illusione. Alla luce di tali risultati, non ha senso che solo il 4% delle persone scriva volontariamente la metà di tutte le recensioni nel set di dati di Amazon. Ho avvertito che qualcos'altro era in gioco. Un mese dopo la pubblicazione dei nostri risultati, la mia intuizione è stata confermata. Nell'ottobre 2015, Amazon ha iniziato una campagna aziendale contro le false recensioni pagate che ha continuato nel 2016 citando in giudizio quasi 1.000 persone accusate di scriverle.
The web is full of fake news! In my opinion this is also false.
Punto chiave di questa pagina
BIAS NEL WEB SEARCH: Ryen White ha notato che, durante una ricerca online, le keywords che le persone inseriscono nelle domande sono influenzate dai pregiudizi posseduti o dalle emozioni vissute (in particolare l'ansia), e vanno a creare dei "frame", cioè dei contesti che indirizzano la ricerca semantica verso risultati errati. Inoltre è stato sperimentalmente dimostrato dal ricercatore Adrian F. Ward che le persone ricevono dall'uso dei motori di ricerca un'illusoria sensazione di "autostima cognitiva" e di efficacia della loro memoria, a questo proposito egli scrive: "Questi risultati suggeriscono che l'aumento dell'autostima cognitiva dopo l'utilizzo di Google non deriva solo dal feedback positivo immediato che deriva dal fornire le risposte giuste. Piuttosto, l'utilizzo di Google dà alle persone la sensazione che Internet sia diventato parte del proprio set di strumenti cognitivi. Un risultato di ricerca è stato richiamato non come una data o un nome preso da una pagina Web, ma come un prodotto di ciò che risiedeva nei ricordi dei partecipanti allo studio, consentendo loro di prendersi effettivamente il merito di sapere cose che erano un prodotto degli algoritmi di ricerca di Google."
Punti di riflessione
L'utilizzo di Google per rispondere a domande di cultura generale aumenta artificialmente la fiducia delle persone nella propria capacità di ricordare ed elaborare le informazioni e porta a previsioni erroneamente ottimistiche su quanto sapranno senza Internet. Quando le informazioni sono a portata di mano, possiamo credere erroneamente che provengano dalla nostra testa. (Adrian Ward)
_
Noi abbiamo dimostrato che le persone cercano di confermare le loro convinzioni con le loro ricerche e che i motori di ricerca forniscono risultati di ricerca distorti, irrispettosi della verità. (Ryen White)
_
Tutti noi tendiamo a cercare prove ed evidenze a sostegno delle nostre idee e a rigettare quelle contrarie ad esse. (Raymond Nickerson)
_
Ogni tentativo di essere imparziali potrebbe essere distorto dalla nostra cultura e dai nostri pregiudizi cognitivi, il primo passo deve quindi essere la consapevolezza dei pregiudizi (bias). Solo se i webdesigner e gli sviluppatori conoscono l'esistenza dei bias possono contrastarli e, se possibile, correggerli. Altrimenti, il nostro futuro potrebbe essere un mondo fittizio basato su di percezioni distorte da cui nemmeno diversità, novità o serendipità potranno salvarci. (Ricardo Baeza-Yates)
Le persone cercano di confermare le loro convinzioni con le loro ricerche e i motori di ricerca forniscono risultati di ricerca distorti, irrispettosi della verità
I motori di ricerca ci danno un'illusoria sensazione di autostima cognitiva
Autostima cognitiva e distorsioni del giudizio (Bias) nelle ricerche online e nella nostra mente
Talvolta ci chiediamo perchè facciamo così fatica a ottenere rapidamente delle buone risposte dalle nostre ricerche online. La risposta degli esperti (vedi bibliografia White) è che non teniamo conto dei pregiudizi che albergano nella nostra mente e di quelli che gli algoritmi dei motori di ricerca portano dentro di se. L'attenzione al proprio processo di ricerca online si rivela indispensabile se si vogliono evitare gli errori che la maggior parte delle persone fa durante le ricerche online. Ad esempio il ricercatore Ryen White, in uno studio sperimentale condotto su impiegati Microsoft, ha evidenziato la forza irresistibile di biases quali il Pregiudizio di conferma (Confirmation Bias). Ryen White ha notato che le keywords che le persone inseriscono nelle domande sono influenzate dai pregiudizi posseduti o dalle emozioni vissute (in particolare l'ansia), e vanno a creare dei "frame", cioè dei contesti che indirizzano la ricerca semantica verso risultati errati. Inoltre è stato sperimentalmente dimostrato dal ricercatore Adrian F. Ward (vedi bibliografia 2021) che le persone ricevono dall'uso dei motori di ricerca un'illusoria sensazione di "autostima cognitiva" e di efficacia della loro memoria, a questo proposito scrive Ward (vedi bibliografia 2013):
Questi risultati suggeriscono che l'aumento dell'autostima cognitiva dopo l'utilizzo di Google non deriva solo dal feedback positivo immediato che deriva dal fornire le risposte giuste. Piuttosto, l'utilizzo di Google dà alle persone la sensazione che Internet sia diventato parte del proprio set di strumenti cognitivi. Un risultato di ricerca è stato richiamato non come una data o un nome preso da una pagina Web, ma come un prodotto di ciò che risiedeva nei ricordi dei partecipanti allo studio, consentendo loro di prendersi effettivamente il merito di sapere cose che erano un prodotto degli algoritmi di ricerca di Google.
Esistono due tipi di pregiudizi che vanno a inficiare i risultati: pregiudizi di ricerca che sono presenti nella mente di colui che effettua la ricerca, e pregiudizi di sistema che sono presenti negli algoritmi del motore e sono stati creati da un apprendimento del motore distorto o incompleto (machine learning).Se si vuole fare una ricerca che dia dei risultati utili a raggiungere lo scopo desiderato occorre:
1-Umiltà, cioè essere consapevoli (almeno in parte) dei propri pregiudizi e sforzarsi di contrastarli2-Conoscenza del contesto, cioè scegliere le keyword da inserire nella query, chiedendosi se rappresentano il contesto culturale che si vuole esplorare3-Mente aperta, cioè valutare i risultati della SERP non guardando troppo all'ordinamento dei risultati (non bisogna fermarsi alla prima pagina di risultati) ma guardando alla credibilità dell'autore o dell'Istituzione e al numero di citazioni dei documenti4-Scetticismo, cioè mantenere dubbi sulla qualità di risultati e sforzarsi di acquisire nuove informazioni.Scrive Ryen White nelle conclusioni del suo studio:Le credenze delle persone e i pregiudizi inconsci che derivano da tali credenze, influenzano il loro giudizio, il processo decisionale e le loro azioni, così come evidenziato dagli psicologi. Possono essere osservati pregiudizi nel recupero di informazioni in situazioni in cui i ricercatori cercano o vengono a contatto con informazioni che si discostano significativamente dalla verità. Abbiamo descritto uno studio dettagliato dei pregiudizi in ricerche online, nel contesto di domande sì-no in ambito medico. Abbiamo dimostrato che le persone cercano di confermare le loro convinzioni con le loro ricerche e che i motori di ricerca forniscono risultati di ricerca distorti, irrispettosi della verità. [probabilmente falsati dall'errato apprendimento automatico dell'algoritmo del motore] Abbiamo anche dimostrato che le persone hanno maggiori probabilità di selezionare informazioni positive sui risultati di ricerca del motore (SERP), indipendentemente dall'ordinamento dei risultati, e probabilmente salteranno i risultati negativi per raggiungere quelli positivi. Forse la scoperta più preoccupante della nostra analisi è che la combinazione di pregiudizi di sistema e di ricerca portano le persone ad accontentarsi di risposte errate per circa la metà delle volte (e che questa inesattezza viene amplificata quando la risposta del medico, usata come verità fondamentale, è no). I risultati evidenziano un compromesso tra distorsione e precisione che i motori di ricerca devono considerare.
Il web rappresenta la saggezza della folla? E chi ci crede ?
I pregiudizi fanno parte della storia dell'umanità fin dai suoi albori ma, con l'invenzione del Web la loro diffusione è aumentata a dismisura. I bias sono presenti nei dati perchè qualcuno ce li introduce, e si tratta di piccole minoranze molto attive. Il ricercatore Ricardo Baeza-Yates (vedi bibliografia) chiarisce questo fenomeno:
La presenza di biases ha causato parzialità nei big data per diventare una tendenza e un argomento controverso negli ultimi anni. Le minoranze, in particolare, hanno subito gli effetti dannosi della distorsione dei dati nel perseguire obiettivi di vita, con esiti governati principalmente da algoritmi, a partire dalla concessione di mutui fino alla personalizzazione della pubblicità. Mentre gli ostacoli che essi incontrano rimangono un punto importante, il pregiudizio riguarda tutti noi, sebbene la maggior parte delle volte siamo inconsapevoli o non sappiamo come potrebbe (negativamente) influenzare il nostro giudizio e comportamento. Nell'esplorazione di un set di dati di Facebook dal 2009 con quasi 40.000 utenti attivi, abbiamo riscontrato che il 7% ha prodotto il 50% dei post. In un set di dati più grande di Amazon con recensioni dal 2013, abbiamo trovato solo il 4% di utenti attivi. In un set di dati molto grande dal 2011 con 12 milioni di utenti Twitter attivi, il risultato è stato solo del 2%. Infine, abbiamo appreso che la prima stesura della metà delle voci di Wikipedia in inglese è stato pubblicata dallo 0,04% dei suoi editor registrati o, approssimativamente, da 2.000 persone, indicando che solo una piccola percentuale di tutti gli utenti contribuisce al Web e che l'idea che il Web rappresenti la saggezza della folla è un'illusione. Alla luce di tali risultati, non ha senso che solo il 4% delle persone scriva volontariamente la metà di tutte le recensioni nel set di dati di Amazon. Ho avvertito che qualcos'altro era in gioco. Un mese dopo la pubblicazione dei nostri risultati, la mia intuizione è stata confermata. Nell'ottobre 2015, Amazon ha iniziato una campagna aziendale contro le false recensioni pagate che ha continuato nel 2016 citando in giudizio quasi 1.000 persone accusate di scriverle.Ricardo Baeza-Yates descrive i bias che possono presentarsi sul web suddividendoli in due tipologie:
- bias nei dati e bias algoritmici: i bias nei dati possono essere stati introdotti dagli autori umani degli articoli inconsapevolmente e provenire da inaccuratezza originaria dei dati, quelli algoritmici possono derivare dai testi (magari densi di bias di genere o altro) che sono stati usati per l'apprendimento automatico (machine learning) degli algoritmi.
- bias di autoselezione: derivano dall'interazione dell'utente con il web. Noi leggiamo dall'alto in basso e da sinistra a destra, quindi le informazioni che ci attraggono maggiormente (e vengono più cliccate) si trovano nella parte alta spostata a sinistra della pagina web (il cosiddetto triangolo d'oro vedi figura)
Tipi di bias presenti sul web
Ricardo Baeza-Yates ha individuato due tipologie di bias: i bias dei dati e algoritmici e i bias di autoselezione. (Cliccare per approfondire)
Quando guardiamo una pagina web occorrono alcune decine di secondi prima di riuscire a maturare un giudizio "conscio" sul nostro interesse per quello che vediamo. Ma la nostra mente ha già emesso (in 50 millesimi di secondo) un giudizio "inconscio" del nostro gradimento. E il nostro gradimento è "guidato" dai bias che agiscono inconsciamente nella nostra mente...
Google ci dà l'illusione di avere nella nostra memoria tutte le informazioni che ci dà
Secondo uno studio emprico dello psicologo Adrian Ward (vedi bibliografia 2021) la facilità di accesso al motore di ricerca e la velocità con cui ci rende disponibili le informazioni ci danno l'illusione di ricordare molte più cose di quanto, in realtà, ricordiamo veramente.
Conclusioni (provvisorie): le keyword sono influenzate dai pregiudizi posseduti
La ricerca di informazioni è un'attività umana fondamentale. Nel mondo moderno, è spesso condotta attraverso interazioni con i motori di ricerca. Talvolta ci chiediamo perchè facciamo così fatica a ottenere rapidamente delle buone risposte dalle nostre ricerche online. La risposta degli esperti è che non teniamo conto dei pregiudizi che albergano nella nostra mente e di quelli che gli algoritmi dei motori di ricerca portano dentro di se. L'attenzione al proprio processo di ricerca online si rivela indispensabile se si vogliono evitare gli errori che la maggior parte delle persone fa durante le ricerche online.
Esistono due tipi di pregiudizi che vanno a inficiare i risultati: pregiudizi di ricerca che sono presenti nella mente di colui che effettua la ricerca, e pregiudizi di sistema che sono presenti negli algoritmi del motore e sono stati creati da un apprendimento del motore distorto o incompleto (machine learning). Il ricercatore Ryen White, in uno studio sperimentale condotto su impiegati Microsoft, ha evidenziato la forza irresistibile di biases quali il Pregiudizio di conferma (Confirmation Bias). Ryen White ha notato che le keywords che le persone inseriscono nelle domande sono influenzate dai pregiudizi posseduti o dalle emozioni vissute (in particolare l'ansia), e vanno a creare dei "frame", cioè dei contesti che indirizzano la ricerca semantica verso risultati errati.
Esistono due tipi di pregiudizi che vanno a inficiare i risultati: pregiudizi di ricerca che sono presenti nella mente di colui che effettua la ricerca, e pregiudizi di sistema che sono presenti negli algoritmi del motore e sono stati creati da un apprendimento del motore incompleto o distorto (machine learning), magari attuato su testi densi di pregiudizi. Se si vuole fare una ricerca che dia dei risultati utili a raggiungere lo scopo desiderato occorre: 1-Umiltà, cioè essere consapevoli (almeno in parte) dei propri pregiudizi e sforzarsi di contrastarli, 2-Conoscenza del contesto, cioè scegliere le keyword da inserire nella query, chiedendosi se rappresentano il contesto culturale che si vuole esplorare, 3-Mente aperta, cioè valutare i risultati della SERP non guardando troppo all'ordinamento dei risultati (non bisogna fermarsi alla prima pagina di risultati) ma guardando alla credibilità dell'autore o dell'Istituzione e al numero di citazioni dei documenti, 4-Scetticismo, cioè mantenere dubbi sulla qualità di risultati e sforzarsi di acquisire nuove informazioni.
per scaricare le conclusioni (in pdf):
La razionalità richiede impegno personale!
Iscriviti alla Newsletter di pensierocritico.eu per ricevere in anteprima nuovi contenuti e aggiornamenti:
Iscriviti alla Newsletter di pensierocritico.eu per ricevere in anteprima nuovi contenuti e aggiornamenti:
Bibliografia (chi fa delle buone letture è meno manipolabile)
- Kristin Finklea (2015), Dark Web (PDF) [18 citazioni] - Congressional Reserve Service
Ryen W. White (2013), Beliefs and Biases in Web Search (PDF) [101 citazioni]
Cathy Costello (2015), The Research Process - Virtual Library
- Sam Hurley (2018), Smashing Semantic SEO IN 2017 & Beyond: The ultimate guide - digitalcurrent
- Joshua Hardwick (2019), 6 tool gratis per la ricerca delle parole chiave (da fare impallidire Google Keyword Planner)
- (2019), Il più grande cambiamento all’algoritmo di Google degli ultimi tempi - Il Post
- Mike Gualtieri (2017), The Forrester Wave™: Cognitive Search And Knowledge Discovery Solutions, Q2 2017
- Patryk Wojtowicz (2014), Darknet e E Deep Web: il lato oscuro del web per la privacy e la protezione dei dati (PDF) [Tesi di laurea]
- Ricardo Baeza-Yates (2018), Bias on the Web (PDF) [63 citazioni]
- Adrian F. Ward, Daniel M. Wegner (2013), The Internet Has Become the External Hard Drive for Our Memories - Scientific American
- Adrian F. Ward (2021), People mistake the internet’s knowledge for their own - PNAS
- John Timmer (2021), Could search engines be fostering some Dunning-Kruger? - ars TECHNICA
Commenti
Se ritenete che le tesi del "punto chiave" non vengano sufficientemente supportate dagli argomenti presenti in questa pagina potete esprimere il vostro parere (motivandolo).
Inviate una email con il FORM. Riceverete una risposta. Grazie della collaborazione.
Pagine correlate
Libri consigliati a chi è interessato a migliorare i propri processi di ricerca
Spesa annua pro capite in Italia per gioco d'azzardo 1.583 euro, per l'acquisto di libri 58,8 euro (fonte: l'Espresso 5/2/17)
Pagina aggiornata il 5 giugno 2023